Publications

Lithography-based additive manufacturing of ceramics: Materials, applications and perspectives

Lithography-based additive manufacturing of ceramics: Materials, applications and perspectives

MRS COMMUNICATIONS

Authors: Stampfl, Juergen; Schwentenwein, Martin; Homa, Johannes; Prinz, Fritz B.

Lithography-based additive manufacturing methods emerged as a powerful method for manufacturing of complex-shaped ceramic parts with excellent functional and structural properties. This paper summarizes the current state of the art in this field by articulating technological challenges associated with printing of functional parts. In addition, the paper addresses process requirements towards further enhancing component quality. A key aspect for obtaining high-quality parts is related to controlling chemical composition and uniformity of the photopolymerizable slurries. The latter requires in-depth understanding of the underlying photochemical processes. Changes in the formulation of the resin as well as changes in the exposure strategy distinctly influence bond conversion and gelling, which, in turn, influence the properties of the green part during thermal processing. Properly optimized processes and material composition allow to target a variety of challenging applications including patient specific parts for digital dentistry, and 3D-printed ceramics which can operate in harsh environments, as may be required in aerospace or chemical engineering applications. The paper will also provide an outlook into novel opportunities for 3D-printed ceramics.

Click here to view full article

Alloyed Pt-Zn Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells

Alloyed Pt-Zn Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells

ACS APPLIED ENERGY MATERIALS, vol. 5, Iss. 7

Authors: Dull, Samuel M.; Vinogradova, Olga; Xu, Shicheng; Koshy, David M.; Vullum, Per Erik; Torgersen, Jan; Kirsch, Sebastian; Viswanathan, Venkatasubramanian; Jaramillo, Thomas F.; Prinz, Fritz B.

Better oxygen reduction catalysts are needed to appreciably increase the efficiency of proton exchange membrane fuel cells. In this work, high-activity Pt-Zn alloy catalysts were prepared using two distinct synthetic approaches. The first-where Zn was introduced to Pt nanoparticles via atomic layer deposition-led to a 30% increase in Pt-mass-normalized fuel cell activity. Density functional theory calculations elucidated the origin of this enhancement and motivated the preparation of an alloy with increased Zn content. To this end, a fabrication technique leveraging Zn electroplating was employed to prototype a second Pt-Zn alloy with a rotating disk electrode (RDE). The higher-dosed structure (similar to 19 at. % Zn) delivered exemplary activity (MA = similar to 3 A/mg(pt)), but the synthetic approach was not amenable to membrane electrode assembly (MEA) fabrication. An Arrhenius analysis was carried out to project the hypothetical catalytic enhancement under fuel cell operating conditions. This exercise introduced a discussion on the reduced activity observed in MEAs relative to the benchtop RDE setups used more ubiquitously for catalyst evaluation.

Click to view full article

Hierarchical titanium nitride nanostructured thin film gas diffusion electrodes for next generation PEM fuel cells

Hierarchical titanium nitride nanostructured thin film gas diffusion electrodes for next generation PEM fuel cells

ELECTROCHIMICA ACTA, vol. 418

Authors: Rossetti, Gabriele; Xu, John; Hong, Soonwook; Casalegno, Andrea; Prinz, Fritz B.; Di Fonzo, Fabio

Durability of the catalyst support in polymer electrolyte membrane fuel cell (PEMFC) is still one of the main obstacles to its full deployment. In fact, despite the high peak performances achieved by state of the art mem-brane electrode assemblies (MEA), the degradation of their performances is still a major issue. Since engineering solutions proposed to overcome this issue increase the complexity and the cost of the system, the development of a stable catalyst support capable to stabilize the Pt nanoparticles is a preferable strategy. For this reason, in this work a highly durable, high surface area support has been developed by growing an array of hierarchical nanostructures of an extremely oxidation resistant material, i.e., titanium nitride (TiN) directly on the micro-porous layer of a commercial gas diffusion layer. Pt was successively deposited to obtain a hierarchical titanium nitride nanostructured thin film gas diffusion electrode (HTNTF-GDE). It resulted capable to withstand the harsh conditions of the accelerated stress tests (AST) with a degradation of the electrochemically active surface area (ECSA) of to 31% after 15,000 cycles in the rotating disk electrode (RDE) setup and of 34% degradation after 5000 cycles in a fuel cell set-up, exceeding in both cases the DOE target for support durability. Besides durability, we investigated the HTNTF-GDE also in an ionomer free catalyst layer configurations.

Click here to view full article

Magnetic Weyl Semimetal in K2Mn3(AsO4)3 with the Minimum Number of Weyl Points

Magnetic Weyl Semimetal in K2Mn3(AsO4)3 with the Minimum Number of Weyl Points

PHYSICAL REVIEW LETTERS, vol. 128. Iss. 17

Authors: Nie, Simin; Hashimoto, Tatsuki; Prinz, Fritz B.

The “hydrogen atom” of magnetic Weyl semimetals, with the minimum number of Weyl points, has received growing attention recently due to the possible presence of Weyl-related phenomena. Here, we report a nontrivial electronic structure of the ferromagnetic alluaudite-type compound K2Mn3(AsO4)3. It exhibits only a pair of Weyl points constrained in the z direction by the twofold rotation symmetry, leading to extremely long Fermi arc surface states. In addition, the study of its low-energy effective model results in the discovery of various topological superconducting states, such as the hydrogen atom of a Weyl superconductor. Our Letter provides a feasible platform to explore the intrinsic properties related to Weyl points, and the related device applications.

Click here to view full article

Improving intrinsic oxygen reduction activity and stability: Atomic layer deposition preparation of platinum-titanium alloy catalysts

Improving intrinsic oxygen reduction activity and stability: Atomic layer deposition preparation of platinum-titanium alloy catalysts

APPLIED CATALYSIS B-ENVIRONMENTAL, vol. 300

Authors: Kim, Yongmin; Xu, Shicheng; Park, Joonsuk; Dadlani, Anup Lal; Vinogradova, Olga; Krishnamurthy, Dilip; Orazov, Marat; Lee, Dong Un; Dull, Sam; Schindler, Peter; Han, Hyun Soo; Wang, Zhaoxuan; Graf, Tanja; Schladt, Thomas D.; Mueller, Jonathan E.; Sarangi, Ritimukta; Davis, Ryan; Viswanathan, Venkatasubramanian; Jaramillo, Thomas Francisco; Higgins, Drew C.; Prinz, Fritz B.

Improved activity and stability Pt-based catalysts for the oxygen reduction reaction (ORR) are needed to perpetuate the deployment of polymer electrolyte fuel cells (PEFCs) in the transportation sector. Here, we use atomic layer deposition of TiO2 and Pt coupled with thermal reductive annealing to prepare Pt3Ti electrocatalysts. The atomic level synthetic control resulted in Pt3Ti nanoparticles with high ORR performance, including a mass activity of 1.84 A/mgPt and excellent electrochemical stability. The Pt3Ti nanoparticles show excellent specific activity - 5.3-fold higher than commercial Pt/C and 3-fold higher than polycrystalline Pt, exceeding the performance of any PtTi catalysts reported to date. Combined experimental and computational efforts indicate that Pt enrichment on the Pt3Ti enhances the activity, and the intrinsic stability of the Pt3Ti phase provides durability. This knowledge, along with the facile fabrication of alloys by atomic layer deposition, can be leveraged to designed improved performance catalysts.

Click here to view full article

Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition

Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition

ADVANCED MATERIALS, vol. 33, Iss. 30

Authors: Xu, Shicheng; Wang, Zhaoxuan; Dull, Sam; Liu, Yunzhi; Lee, Dong Un; Lezama Pacheco, Juan S.; Orazov, Marat; Vullum, Per Erik; Dadlani, Anup Lal; Vinogradova, Olga; Schindler, Peter; Tam, Qizhan; Schladt, Thomas D.; Mueller, Jonathan E.; Kirsch, Sebastian; Huebner, Gerold; Higgins, Drew; Torgersen, Jan; Viswanathan, Venkatasubramanian; Jaramillo, Thomas Francisco; Prinz, Fritz B.

The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mg(Pt)(-1) @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.

Click here to view article

Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy

Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy

APPLIED PHYSICS LETTERS, vol. 118, Iss. 19

Authors: Chaikasetsin, Settasit; Kodama, Takashi; Bae, Kiho; Jung, Jun Young; Shin, Jeeyoung; Lee, Byung Chul; Kim, Brian S. Y.; Seo, Jungju; Sim, Uk; Prinz, Fritz B.; Goodson, Kenneth E.; Park, Woosung

Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 x 10(-6) +/- 6.4 x 10(-6) K-1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.

Click here to view article

Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs

Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs

CELL REPORTS PHYSICAL SCIENCE, vol. 2, Iss. 1

Authors: Dull, Samuel M.; Xu, Shicheng; Goh, Timothy; Lee, Dong Un; Higgins, Drew; Orazov, Marat; Koshy,; David M.; Vullum, Per Erik; Kirsch, Sebastian; Huebner, Gerold; Torgersen, Jan; Jaramillo, Thomas F.; Prinz, Fritz B.

As the platinum (Pt) loading in proton exchange membrane fuel cell cathodes is driven down to reduce costs, catalyst utilization becomes increasingly important. Here, we report an atomic layer deposition-facilitated electrode fabrication technique designed to improve the catalyst-ionomer interface. The ionomer solvent environment and carbon support nanoporosity are studied independently, and it is found that the combination of an agglomerated ionomer dispersion and a mesoporous support gives access to a high catalytic activity (mass activity [MA] = 0.31 A/mg(pt) with pure Pt) that can be maintained at high current densities We hypothesize that the formulation results in Pt sufficiently withdrawn from the ionomer such that poisoning and transport losses are reduced. When paired with a low-resistance dispersion-cast membrane, a 0.1-m(gp)t/cm(2) cathode can deliver a 0.65-V power density of 1.0 W/cm(2) at 150 kPa and 80 degrees C. The assembly also demonstrates impressive durability, losing only 33 mV after 30,000 cycles.

Click here to view article

Finish-pass strategy to improve sidewall angle and processing time in FIB milled structures

Finish-pass strategy to improve sidewall angle and processing time in FIB milled structures

SECOND EUROPEAN CONFERENCE ON THE STRUCTURAL INTEGRITY OF ADDITIVELY MANUFACTURED MATERIALS, vol. 34, pg. 266-273

Authors: Lid, Markus Joakim; Bin Afif, Abdulla; Torgersen, Jan; Prinz, Fritz B.

Focused Ion Beams (FIB) systems are employed for their ability to manipulate and remove material on the nanoscale for creating complex structures. By splitting the milling job into multiple sub-patterns, consisting of a bulk milling pattern, and one or more finish pass patterns that follow the contours of the milling geometry, we show that one can counteract the effect of re-deposition on the sidewalls. Our tests showed a reduction in sidewall angle from 96 degrees to 92.5 degrees using identical beam conditions and nearly the same processing time employing only one finish pass pattern. Further, by assigning different beam currents to three different sub-patterns, we were able to reduce angles to 92 degrees, while cutting total milling time by 10%. Improving our strategy may render FIB systems a potential as effective nanofabrication tools applicable beyond creating prototypes and lamellae for material characterization. (C) 2021 The Authors. Published by Elsevier B.V.

Click here to view article

Condensing water vapor to droplets generates hydrogen peroxide

Condensing water vapor to droplets generates hydrogen peroxide

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA, vol. 117, Iss. 49

Authors: Lee, Jae Kyoo; Han, Hyun Soo; Chaikasetsin, Settasit; Marron, Daniel P.; Waymouth, Robert M.; Prinz, Fritz B.; Zare, Richard N.

It was previously shown [J. K. Lee et al., Proc. Natl. Acad. Sci. U.S.A., 116, 19294-19298 (2019)] that hydrogen peroxide (H2O2) is spontaneously produced in micrometer-sized water droplets (microdroplets), which are generated by atomizing bulk water using nebulization without the application of an external electric field. Here we report that H2O2 is spontaneously produced in water microdroplets formed by dropwise condensation of water vapor on low-temperature substrates. Because peroxide formation is induced by a strong electric field formed at the water-air interface of microdroplets, no catalysts or external electrical bias, as well as precursor chemicals, are necessary. Time-course observations of the H2O2 production in condensate microdroplets showed that H2O2 was generated from microdroplets with sizes typically less than similar to 10 mu m. The spontaneous production of H2O2 was commonly observed on various different substrates, including silicon, plastic, glass, and metal. Studies with substrates with different surface conditions showed that the nucleation and the growth processes of condensate water microdroplets govern H2O2 generation. We also found that the H2O2 production yield strongly depends on environmental conditions, including relative humidity and substrate temperature. These results show that the production of H2O2 occurs in water microdroplets formed by not only atomizing bulk water but also condensing water vapor, suggesting that spontaneous water oxidation to form H2O2 from water microdroplets is a general phenomenon. These findings provide innovative opportunities for green chemistry at heterogeneous interfaces, self-cleaning of surfaces, and safe and effective disinfection. They also may have important implications for prebiotic chemistry.

Click here to view article

Tunable Dielectric and Thermal Properties of Oxide Dielectrics via Substrate Biasing in Plasma-Enhanced Atomic Layer Deposition

Tunable Dielectric and Thermal Properties of Oxide Dielectrics via Substrate Biasing in Plasma-Enhanced Atomic Layer Deposition

ACS APPLIED MATERIALS & INTERFACES, vol. 12, Iss. 40

Authors: Kim, Yoonjin; Kwon, Heungdong; Han, Hyun Soo; Kim, Hyo Jin K.; Kim, Brian S. Y.; Lee, Byung Chul; Lee, Joohyun; Asheghi, Mehdi; Prinz, Fritz B.; Goodson, Kenneth E.; Lim, Jongwoo; Sim, Uk; Park, Woosung

The ability to control the properties of dielectric thin films on demand is of fundamental interest in nanoscale devices. Here, we modulate plasma characteristics at the surface of a substrate to tune both dielectric constant and thermal conductivity of amorphous thin films grown using plasma enhanced atomic layer deposition. Specifically, we apply a substrate bias ranging from 0 to similar to 117 V and demonstrate the systematic tunability of various material parameters of Al2O3. As a function of the substrate bias, we find a nonmonotonical evolution of intrinsic properties, including density, dielectric constant, and thermal conductivity. A key observation is that the maximum values in dielectric constant and effective thermal conductivity emerge at different substrate biases. The impact of density on both thermal conductivity and dielectric constant is further examined using a differential effective medium theory and the Clausius-Mossotti model, respectively. We find that the peak value in the dielectric constant deviates from the Clausius-Mossotti model, indicating the change of oxygen fraction in our thin films as a function of substrate bias. This finding suggests that the increased local strength of plasma sheath not only enhances material density but also controls the dynamics of microstructural defect formation beyond what is possible with conventional approaches. Based on our experimental observations and modeling, we further build a phenomenological relation between dielectric constant and thermal conductivity. Our results pave invaluable avenues for optimizing dielectric thin films at the atomic scale for a wide range of applications in nanoelectronics and energy devices.

Click here to view article

Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3-delta thin-film electrolytes

Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3-delta thin-film electrolytes

Journal of Power Sources, Volume 465

Authors: Kang, Eun Heui; Choi, Hyeon Rak; Park, Jong Seon; Kim, Keun Hee; Kim, Dong Hwan; Bae, Kiho; Prinz, Fritz B.; Shim, Joon Hyung

In this study, we report the successful fabrication of thin-film proton ceramic fuel cells (PCFCs) using a slurry spin coating technique. BaZr0.2Ce0.6Y0.1Yb0.1O3-delta (BZCYYb) and PrBa0.5Sr0.5Co1.5Fe0.5O5+delta are used as the proton ceramic electrolyte and cathode material, respectively. All the active element layers, including the anode functional layers, electrolyte, and cathode, are fabricated by spin coating on the NiO-BZCYYb anode support pellet. The PCFCs exhibit reasonably high performance with peak power densities of 250-650 mW/cm(2) at the intermediate temperature (IT) range of 500-600 degrees C, proving the cell production feasibility of spin coating. In this study, it is confirmed that the fabrication variables influence the morphological properties, such as grain sizes, demonstrating the improvement in charge transport rate and polarization performance of the cathode. The PCFCs also exhibit excellent long-term stability, with no apparent degradation for over 80 h. These results clearly show the spin coating method has great potential in the upcoming mass production of ceramic fuel cells, regarding its ease of manufacture and economy.

Click here for the full article

Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells with Heterogeneous Nickel-Palladium Catalysts Prepared by Atomic Layer Deposition

Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells with Heterogeneous Nickel-Palladium Catalysts Prepared by Atomic Layer Deposition

ACS Sustainable Chemistry & Engineering, Vol. 8, Issue28

AUTHORS: Jang, DY (Jang, Dong Young); Koo, J (Koo, Junmo); Choi, HR (Choi, Hyeon Rak); Kim, JW (Kim, Jun Woo); Jeong, HJ (Jeong, Heon Jae); Prinz, FB (Prinz, Fritz B.); Shim, JH (Shim, Joon Hyung)

Bimetallic Ni/Pd anodic catalysts are synthesized for application in direct methanol solid oxide fuel cells (DMSOFCs). Pd nanoparticles are deposited on the surface of porous Ni, prepared by sputtering, via atomic layer deposition (ALD). The amount of ALD Pd is optimized by varying the number of ALD cycles (150, 300, and 600 cycles). The power output of fuel cells employing the ceramic electrolyte-support pellets is enhanced by 3-6 times with optimal ALD Pd treatment compared to that of the cell with a bare Ni anode. The anode kinetics and stability against carbon coking are significantly improved by the ALD Pd surface treatment. The surface of the anode with ALD Pd remains clean after a fuel cell test with methanol, whilst severe growth of carbon fibers is observed on the bare Ni surface. The ALD Pd cell exhibits superior long-term stability compared to the bare Ni anode.

Click here to view full article

Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6

Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6

Physical Review Letters, Vol. 124, Iss. 7

AUTHORS:  SIMIN NIE, YAN SUN, FRITZ B. PRINZ, ZHIJUN WANG, HONGMING WENG, ZHONG FANG, AND XI DAI

Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that “soft” ferromagnetic material EuB6 can achieve multiple topological semimetal phases by simply tuning the direction of the magnetic moment. Explicitly, EuB6 is a topological nodal-line semimetal when the moment is aligned along the [001] direction, and it evolves into a Weyl semimetal with three pairs of Weyl points by rotating the moment to the [111] direction. Interestingly, we identify a composite semimetal phase featuring the coexistence of a nodal line and Weyl points with the moment in the [110] direction. Topological surface states and anomalous Hall conductivity, which are sensitive to the magnetic order, have been computed and are expected to be experimentally observable. Large-Chern-number quantum anomalous Hall effect can be realized in its [111]-oriented quantum-well structures.

Click here to view article

Topological Nodal-line Semimetals in Ferromagnetic Rare-earth-metal Monohalides

Topological Nodal-line Semimetals in Ferromagnetic Rare-earth-metal Monohalides

Physical Review B, Vol. 99, 035125

AUTHORS: SIMIN NIE, HONGMING WENG AND FRITZ B. PRINZ

The topological nodal-line semimetals (TNLSs) found so far are extremely limited to nonmagnetic materials and most of them are spinless. Here, the authors find from first-principles calculations and an effective model analysis that the single-layer rare-earth monohalides La$X$ and single-layer Gd$X$ (where $X$ is Cl or Br) are ideal 2D Weyl semimetals and large-gap 2D quantum anomalous Hall insulators (QAHIs), respectively. Moreover, 3D La$X$ and 3D Gd$X$ are TNLSs and 3D weak QAHIs, respectively. The nodal lines in 3D La$X$ are robust against strong spin-orbit coupling, providing a novel platform toward exploring the exotic properties in nodal-line fermions.

Visit PHYSICAL REVIEW B for the complete article

Topological Phases in the TaSe3 Compound

Topological Phases in the TaSe3 Compound

Physical Review B, Vol. 87, Iss. 12-15

AUTHORS: SIMIN NIE, LINGYI XING, RONGYING JIN, WEIWEI XIE, ZHIJUN WANG AND FRITZ B. PRINZ

Based on first-principles calculations, we show that stoichiometric TaSe3, synthesized in space group P21/m, belongs to a three-dimensional strong topological insulator (TI) phase with Z2 invariants (1;100). The calculated surface spectrum shows clearly a single Dirac cone on surfaces, with helical spin texture at a constant-energy contour. To check the stability of the topological phase, strain effects have been systematically investigated, showing that many topological phases survive in a wide range of the strains along both the a and c axes, such as strong TI, weak TI, and Dirac semimetal phases. TaSe3 provides us an ideal platform for experimental study of topological phase transitions. More interestingly, since superconductivity in TaSe3 has been reported for a long time, the coexistence of topological phases and a superconducting phase suggests that TaSe3 is a realistic system to study the interplay between topological and superconducting phases in the future.

Visit PHYSICAL REVIEW B for the complete article

Extending the Limits of Pt/C Catalysis with Passivation-gas-incorporated Atomic Layer Deposition

Extending the Limits of Pt/C Catalysis with Passivation-gas-incorporated Atomic Layer Deposition

Nature Catalysis

AUTHORS: SHICHENG XU, YONGMIN KIM, JOONSUK PARK, DREW HIGGINS, SHIH-JIA SHEN, PETER SCHINDLER, DICKSON THIAN, J. PROVINE, JAN TORGERSEN, TANJA GRAF, THOMAS D. SCHLADT, MARAT ORAZOV, BERNARD HAOCHIH LIU, THOMAS F. JARAMILLO AND FRITZ B. PRINZ

Controlling the morphology of noble metal nanoparticles during surface depositions is strongly influenced by precursor–substrate and precursor–deposit interactions. Depositions can be improved through a variety of means, including tailoring the surface energy of a substrate to improve precursor wettability, or by modifying the surface energy of the deposits themselves. Here, we show that carbon monoxide can be used as a passivation gas during atomic layer deposition to modify the surface energy of already deposited Pt nanoparticles to assist direct deposition onto a carbon catalyst support. The passivation process promotes two-dimensional growth leading to Pt nanoparticles with suppressed thicknesses and a more than 40% improvement in Pt surface-to-volume ratio. This approach to synthesizing nanoparticulate Pt/C catalysts achieved high Pt mass activities for the oxygen reduction reaction, along with excellent stability likely facilitated by strong catalyst–support interactions afforded by this synthetic technique.

Visit NATURE CATALYSIS for the complete article

Topological Semimetal in Honeycomb Lattice LnSI

Topological Semimetal in Honeycomb Lattice LnSI

Proceedings of the National Academy of Sciences, Vol. 114, No. 40

AUTHORS: SIMIN NIE, GANG XU, FRITZ B. PRINZ, AND SHOU-CHENG ZHANG

Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.

Visit PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES S for the complete article

Direct and Continuous Strain Control of Catalysts with Tunable Battery Electrode Materials

Direct and Continuous Strain Control of Catalysts with Tunable Battery Electrode Materials

Science, Vol 354, Issue 6315

AUTHORS: HAOTIAN WANG, SHICHENG XU, CHARLOTTE TSAI, YUZHANG LI, CHONG LIU, JIE ZHAO, YAYUAN LIU, HONGYUAN YUAN, FRANK ABILD-PEDERSON, FRITZ. B. PRINZ, JENS K. NORSKOV, YI CUI

We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-corrected transmission electron microscopy. We observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.

Visit SCIENCE for the Complete Article

Benchmarking Density Functional Perturbation Theory to enable High-throughput Screening of Materials for Dielectric Constant and Refractive Index

Benchmarking Density Functional Perturbation Theory to enable High-throughput Screening of Materials for Dielectric Constant and Refractive Index

Physical Review B 93, 115`51

AUTHORS: IOANNIS PETOUSIS, WEI CHEN, GEOFFROY HAUTIER, TANJA GRAF, THOMAS D. SCHLADT, KRISTIN A. PERSSON, AND FRITZ B. PRINZ

In this paper, we demonstrate a high-throughput density functional perturbation theory (DFPT) methodology capable of screening compounds for their dielectric properties. The electronic and ionic dielectric tensors are calculated for 88 compounds, where the eigenvalues of the total dielectric tensors are compared with single crystal and polycrystalline experimental values reported in the literature. We find that GGA/PBE has a smaller mean average deviation from experiments (MARD=16.2%) when compared to LDA. The prediction accuracy of DFPT is lowest for compounds that exhibit complex structural relaxation effects (e.g., octahedra rotation in perovskites) and/or strong anharmonicity. Despite some discrepancies between DFPT results and reported experimental values, the high-throughput methodology is found to be useful in identifying interesting compounds by ranking. This is demonstrated by the high Spearman correlation factor (ρ=0.92). Finally, we demonstrate that DFPT provides a good estimate for the refractive index of a compound without calculating the frequency dependence of the dielectric matrix (MARD=5.7%).

Visit PHYSICAL REVIEW B for the complete article

Atomically Flat Silicon Oxide Monolayer Generated by Remote Plasma

Atomically Flat Silicon Oxide Monolayer Generated by Remote Plasma

The Journal of Physical Chemistry C, 120 (15), pp. 8148-8156, 2016

AUTHORS: DICKSON THIAN, YONAS T. YEMANE, MANCA LOGAR, SHICHENG XU, PETER SCHINDLER, MARTIN M. WINTERKORN, J. PROVINE, FRITZ B. PRINZ

We demonstrate stable, atomically smooth monolayer oxidation of Si(111) using a remote plasma. Scanning tunneling microscopy (STM) confirms the atomically flat nature of the oxidized surface, while cross-sectional transmission electron microscopy (TEM) proves the monolayer to bilayer oxide thickness. Fourier transform infrared spectroscopy (FTIR) and atomic layer deposition (ALD) indicate oxygen is incorporated onto the silicon surface in the form of Si–O–Si and Si–OH bonds. The incorporation of Si–OH bonds is inferred by using TiCl4, a highly specific ALD precursor, for TiO2 ALD. This plasma technique provides precise control of the surface chemistry and yields abrupt yet stable SiO/Si interfaces. It enables production of atomically flat, ALD-active silicon surfaces that could serve as a well-defined platform for investigation of various surface chemistries via STM. Using this substrate, we present the first ever STM observations of ALD TiO2 on silicon oxide.

Visit THE JOURNAL OF PHYSICAL CHEMISTRY C for the Complete Article

Acharya, S., Torgersen, J., Kim, Y., Park, J., Schindler, P., Dadlani, A. L., Winterkorn, M., Xu, S. C., Walch, S. P., Usui, T., Schildknecht, C., & Prinz, F. B. (2016). Self-limiting atomic layer deposition of barium oxide and barium titanate thin films using a novel pyrrole based precursor. JOURNAL OF MATERIALS CHEMISTRY C, 4(10), 1945–1952. https://doi.org/10.1039/c5tc03561a

Amon, C. H., Beuth, J. L., Weiss, L. E., Merz, R., & Prinz, F. B. (1998). Shape deposition manufacturing with microcasting: Processing, thermal and mechanical issues. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 120(3), 656–665. https://doi.org/10.1115/1.2830171

Amon, C. H., Schmaltz, K. S., Merz, R., & Prinz, F. B. (1996). Numerical and experimental investigation of interface bonding via substrate remelting of an impinging molten metal droplet. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 118(1), 164–172. https://doi.org/10.1115/1.2824030

An, J., Bae, J., Hong, S., Koo, B., Kim, Y. B., Gür, T. M., & Prinz, F. B. (2015). Grain boundary blocking of ionic conductivity in nanocrystalline yttria-doped ceria thin films. SCRIPTA MATERIALIA, 104, 45–48. https://doi.org/10.1016/j.scriptamat.2015.03.020

An, J., Kim, Y. B., Gür, T. M., & Prinz, F. B. (2012). Enhancing Charge Transfer Kinetics by Nanoscale Catalytic Cermet Interlayer. ACS APPLIED MATERIALS & INTERFACES, 4(12), 6789–6794. https://doi.org/10.1021/am3019788

An, J., Kim, Y. B., Park, J., Gür, T. M., & Prinz, F. B. (2013). Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm<SUP>2</SUP> at 450 °C. NANO LETTERS, 13(9), 4551–4555. https://doi.org/10.1021/nl402661p

An, J., Kim, Y. B., Park, J. S., Shim, J. H., Gür, T. M., & Prinz, F. B. (2012). Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 30(1). https://doi.org/10.1116/1.3670750

An, J., Koh, A. L., Park, J. S., Sinclair, R., Gür, T. M., & Prinz, F. B. (2013). Aberration-Corrected TEM Imaging of Oxygen Occupancy in YSZ. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 4(7), 1156–1160. https://doi.org/10.1021/jz4002423

An, J., Park, J. S., Koh, A. L., Lee, H. B., Jung, H. J., Schoonman, J., Sinclair, R., Gür, T. M., & Prinz, F. B. (2013). Atomic Scale Verification of Oxide-Ion Vacancy Distribution near a Single Grain Boundary in YSZ. SCIENTIFIC REPORTS, 3. https://doi.org/10.1038/srep02680

An, J., Shim, J. H., Kim, Y. B., Park, J. S., Lee, W., Gür, T. M., & Prinz, F. B. (2014). MEMS-based thin-film solid-oxide fuel cells. MRS BULLETIN, 39(9), 798–804. https://doi.org/10.1557/mrs.2014.171

An, J., Usui, T., Logar, M., Park, J., Thian, D., Kim, S., Kim, K., & Prinz, F. B. (2014). Plasma Processing for Crystallization and Densification of Atomic Layer Deposition BaTiO3 Thin Films. ACS APPLIED MATERIALS & INTERFACES, 6(13), 10656–10660. https://doi.org/10.1021/am502298z

An, J. W., Kim, Y. B., Jung, H. J., Park, J. S., Cha, S. W., Gür, T. M., & Prinz, F. B. (2012). Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 13(7), 1273–1279. https://doi.org/10.1007/s12541-012-0170-8

An, J. W., Kim, Y. B., & Prinz, F. B. (2013). Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 15(20), 7520–7525. https://doi.org/10.1039/c3cp50996f

Bae, J., Hong, S., Koo, B., An, J., Prinz, F. B., & Kim, Y. B. (2014). Influence of the grain size of samaria-doped ceria cathodic interlayer for enhanced surface oxygen kinetics of low-temperature solid oxide fuel cell. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 34(15), 3763–3768. https://doi.org/10.1016/j.jeurceramsoc.2014.05.028

Bae, K., Jang, D. Y., Park, J. S., Son, J. W., Prinz, F. B., & Shim, J. H. (2020). Direct Measurement of Ion Diffusivity in Oxide Thin Film by Using Isotope Tracers and Secondary Ion Mass Spectrometry. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 7(2), 405–410. https://doi.org/10.1007/s40684-019-00169-3

Bae, K., Kim, J. W., Son, J. W., Lee, T., Kang, S., Prinz, F. B., & Shim, J. H. (2018). 3D Evaluation of Porous Zeolite Absorbents Using FIB-SEM Tomography. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 5(2), 195–199. https://doi.org/10.1007/s40684-018-0019-4

Bae, K., Son, K. S., Kim, J. W., Park, S. W., An, J., Prinz, F. B., & Shim, J. H. (2014). Proton incorporation in yttria-stabilized zirconia during atomic layer deposition. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 39(6), 2621–2627. https://doi.org/10.1016/j.ijhydene.2013.11.023

Bai, S. J., Fabian, T., Prinz, F. B., & Fasching, R. J. (2008). Nanoscale probe system for cell-organelle analysis. SENSORS AND ACTUATORS B-CHEMICAL, 130(1), 249–257. https://doi.org/10.1016/j.snb.2007.07.143

Bai, S. J., & Prinz, F. B. (2011). In vivo electrochemical impedance measurement on single cell membrane. MICROELECTRONIC ENGINEERING, 88(10), 3094–3100. https://doi.org/10.1016/j.mee.2011.06.003

Bai, S. J., Ryu, W., Fasching, R. J., Grossman, A. R., & Prinz, F. B. (2011). In vivo O2 measurement inside single photosynthetic cells. BIOTECHNOLOGY LETTERS, 33(8), 1675–1681. https://doi.org/10.1007/s10529-011-0604-x

Brennan, T. P., Trejo, O., Roelofs, K. E., Xu, J., Prinz, F. B., & Bent, S. F. (2013). Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer. JOURNAL OF MATERIALS CHEMISTRY A, 1(26), 7566–7571. https://doi.org/10.1039/c3ta10903h

BUCHINGER, L., & PRINZ, F. B. (1984). ON DISLOCATION REACTIONS IN CU-AL SINGLE-CRYSTALS. SCRIPTA METALLURGICA, 18(8), 857–858. https://doi.org/10.1016/0036-9748(84)90410-1

Buie, C. R., Posner, J. D., Fabian, T., Suk-Won, C. A., Kim, D., Prinz, F. B., Eaton, J. K., & Santiago, J. G. (2006). Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping. JOURNAL OF POWER SOURCES, 161(1), 191–202. https://doi.org/10.1016/j.jpowsour.2006.03.021

Cai, L. L., Cho, I. S., Logar, M., Mehta, A., He, J. J., Lee, C. H., Rao, P. M., Feng, Y. Z., Wilcox, J., Prinz, F. B., & Zheng, X. L. (2014). Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 16(24), 12299–12306. https://doi.org/10.1039/c4cp01748j

Cha, S. W., O’Hayre, R., Lee, S. J., Saito, Y., & Prinz, F. B. (2004). Geometric scale effect of flow channels on performance of fuel cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 151(11), A1856–A1864. https://doi.org/10.1149/1.1799471

Cha, S. W., O’Hayre, R., Park, Y. I., & Prinz, F. B. (2006). Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells. JOURNAL OF POWER SOURCES, 161(1), 138–142. https://doi.org/10.1016/j.jpowsour.2006.04.123

Cha, S. W., O’Hayre, R., & Prinz, F. B. (2004). The influence of size scale on the performance of fuel cells. SOLID STATE IONICS, 175(1–4), 789–795. https://doi.org/10.1016/j.ssi.2004.09.061

Cha, S. W., O’Hayre, R., Saito, Y., & Prinz, F. B. (2004). The scaling behavior of flow patterns: a model investigation. JOURNAL OF POWER SOURCES, 134(1), 57–71. https://doi.org/10.1016/j.jpowsour.2004.03.036

Chaikasetsin, S., Kodama, T., Bae, K., Jung, J. Y., Shin, J., Lee, B. C., Kim, B. S. Y., Seo, J., Sim, U., Prinz, F. B., Goodson, K. E., & Park, W. (2021). Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy. APPLIED PHYSICS LETTERS, 118(19). https://doi.org/10.1063/5.0049160

Chao, C. C., Hsu, C. M., Cui, Y., & Prinz, F. B. (2011). Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes. ACS NANO, 5(7), 5692–5696. https://doi.org/10.1021/nn201354p

Chao, C. C., Kim, Y. B., & Prinz, F. B. (2009). Surface Modification of Yttria-Stabilized Zirconia Electrolyte by Atomic Layer Deposition. NANO LETTERS, 9(10), 3626–3628. https://doi.org/10.1021/nl901724j

Chao, C. C., Motoyama, M., & Prinz, F. B. (2012). Nanostructured Platinum Catalysts by Atomic-Layer Deposition for Solid-Oxide Fuel Cells. ADVANCED ENERGY MATERIALS, 2(6), 651–654. https://doi.org/10.1002/aenm.201200002

Chao, C. C., Park, J. S., Tian, X., Shim, J. H., Gür, T. M., & Prinz, F. B. (2013). Enhanced Oxygen Exchange on Surface-Engineered Yttria-Stabilized Zirconia. ACS NANO, 7(3), 2186–2191. https://doi.org/10.1021/nn305122f

CHEN, R. W., NAVINCHANDRA, D., & PRINZ, F. B. (1994). A COST-BENEFIT-ANALYSIS MODEL OF PRODUCT DESIGN FOR RECYCLABILITY AND ITS APPLICATION. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART A, 17(4), 502–507.

Cheng, J., & Prinz, F. B. (2005). Damage in yttria-stabilized zirconia by Xe irradiation measured by X-ray diffraction. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 227(4), 577–583. https://doi.org/10.1016/j.nimb.2004.10.009

Cho, I. S., Logar, M., Lee, C. H., Cai, L. L., Prinz, F. B., & Zheng, X. L. (2014). Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting. NANO LETTERS, 14(1), 24–31. https://doi.org/10.1021/nl4026902

Cho, J., Park, J., Prinz, F. B., & An, J. (2018). Thermal conductivity of ultrathin BaTiO3 films grown by plasma-assisted atomic layer deposition. SCRIPTA MATERIALIA, 154, 225–229. https://doi.org/10.1016/j.scriptamat.2018.05.049

Cooper, A. G., Kang, S., Kietzman, J. W., Prinz, F. B., Lombardi, J. L., & Weiss, L. E. (1999). Automated fabrication of complex molded parts using mold shape deposition manufacturing. MATERIALS & DESIGN, 20(2–3), 83–89. https://doi.org/10.1016/S0261-3069(99)00013-8

Crabb, K. M., Park, J. S., Chao, C. C., & Prinz, F. B. (2010). Effects of Ion Irradiation on the Performance of Solid Oxide Fuel Cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(1), B166–B172. https://doi.org/10.1149/1.3256137

Dadlani, A., Acharya, S., Trejo, O., Nordlund, D., Peron, M., Razavi, J., Berto, F., Prinz, F. B., & Torgersen, J. (2017). Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES, 9(45), 39105–39109. https://doi.org/10.1021/acsami.7b06728

Dadlani, A. L., Acharya, S., Trejo, O., Prinz, F. B., & Torgersen, J. (2016). ALD Zn(O,S) Thin Films’ Interfacial Chemical and Structural Configuration Probed by XAS. ACS APPLIED MATERIALS & INTERFACES, 8(23), 14323–14327. https://doi.org/10.1021/acsami.6b04000

Dadlani, A. L., Schindler, P., Logar, M., Walch, S. P., & Prinz, F. B. (2014). Energy States of Ligand Capped Ag Nanoparticles: Relating Surface Plasmon Resonance to Work Function. JOURNAL OF PHYSICAL CHEMISTRY C, 118(43), 24827–24832. https://doi.org/10.1021/jp5073044

Dadlani, A. L., Trejo, O., Acharya, S., Torgersen, J., Petousis, I., Nordlund, D., Sarangi, R., Schindler, P., & Prinz, F. B. (2015). Exploring the local electronic structure and geometric arrangement of ALD Zn(O,S) buffer layers using X-ray absorption spectroscopy. JOURNAL OF MATERIALS CHEMISTRY C, 3(47), 12192–12198. https://doi.org/10.1039/c5tc02912k

Dasgupta, N. P., Jung, H. J., Trejo, O., McDowell, M. T., Hryciw, A., Brongersma, M., Sinclair, R., & Prinz, F. B. (2011). Atomic Layer Deposition of Lead Sulfide Quantum Dots on Nanowire Surfaces. NANO LETTERS, 11(3), 934–940. https://doi.org/10.1021/nl103001h

Dasgupta, N. P., Lee, W., & Prinz, F. B. (2009). Atomic Layer Deposition of Lead Sulfide Thin Films for Quantum Confinement. CHEMISTRY OF MATERIALS, 21(17), 3973–3978. https://doi.org/10.1021/cm901228x

Dasgupta, N. P., Liu, C., Andrews, S., Prinz, F. B., & Yang, P. D. (2013). Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(35), 12932–12935. https://doi.org/10.1021/ja405680p

Dasgupta, N. P., Mack, J. F., Langston, M. C., Bousetta, A., & Prinz, F. B. (2010). Design of an atomic layer deposition reactor for hydrogen sulfide compatibility. REVIEW OF SCIENTIFIC INSTRUMENTS, 81(4). https://doi.org/10.1063/1.3384349

Dasgupta, N. P., Neubert, S., Lee, W., Trejo, O., Lee, J. R., & Prinz, F. B. (2010). Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity. CHEMISTRY OF MATERIALS, 22(16), 4769–4775. https://doi.org/10.1021/cm101227h

Dasgupta, N. P., Trejo, O., & Prinz, F. B. (2012). Use of a high-flow diaphragm valve in the exhaust line of atomic layer deposition reactors. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 30(1). https://doi.org/10.1116/1.3656945

Dasgupta, N. P., Xu, S. C., Jung, H. J., Iancu, A., Fasching, R., Sinclair, R., & Prinz, F. B. (2012). Nickel Silicide Nanowire Arrays for Anti-Reflective Electrodes in Photovoltaics. ADVANCED FUNCTIONAL MATERIALS, 22(17), 3650–3657. https://doi.org/10.1002/adfm.201200398

DEMES, G. H., FENVES, S. J., GROSSMANN, I. E., HENDRICKSON, C. T., MITCHELL, T. M., PRINZ, F. B., SIEWIOREK, D. P., SUBRAHMANIAN, E., TALUKDAR, S., & WESTERBERG, A. W. (1993). THE ENGINEERING DESIGN RESEARCH-CENTER OF CARNEGIE-MELLON-UNIVERSITY. PROCEEDINGS OF THE IEEE, 81(1), 10–24. https://doi.org/10.1109/JPROC.1993.752023

Dull, S. M., Vinogradova, O., Xu, S. C., Koshy, D. M., Vullum, P. E., Torgersen, J., Kirsch, S., Viswanathan, V., Jaramillo, T. F., & Prinz, F. B. (2022). Alloyed Pt-Zn Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells. ACS APPLIED ENERGY MATERIALS, 5(7), 8282–8291. https://doi.org/10.1021/acsaem.2c00816

Dull, S. M., Xu, S. C., Goh, T., Lee, D. U., Higgins, D., Orazov, M., Koshy, D. M., Vullum, P. E., Kirsch, S., Huebner, G., Torgersen, J., Jaramillo, T. F., & Prinz, F. B. (2021). Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs. CELL REPORTS PHYSICAL SCIENCE, 2(1). https://doi.org/10.1016/j.xcrp.2020.100297

Elam, J. W., Dasgupta, N. P., & Prinz, F. B. (2011). ALD for clean energy conversion, utilization, and storage. MRS BULLETIN, 36(11), 899–906. https://doi.org/10.1557/mrs.2011.265

ESTOCHEN, E. L., NEUMAN, C. P., & PRINZ, F. B. (1984). APPLICATION OF ACOUSTIC SENSORS TO ROBOTIC SEAM TRACKING. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 31(3), 219–224. https://doi.org/10.1109/TIE.1984.350038

Fabian, T., O’Hayre, R., Litster, S., Prinz, F. B., & Santiago, J. G. (2010a). Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump. JOURNAL OF POWER SOURCES, 195(11), 3640–3644. https://doi.org/10.1016/j.jpowsour.2009.12.025

Fabian, T., O’Hayre, R., Litster, S., Prinz, F. B., & Santiago, J. G. (2010b). Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell. JOURNAL OF POWER SOURCES, 195(10), 3201–3206. https://doi.org/10.1016/j.jpowsour.2009.12.030

Fabian, T., O’Hayre, R., Prinz, F. B., & Santiago, J. G. (2007). Measurement of temperature and reaction species in the cathode diffusion layer of a free-convection fuel cell. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 154(9), B910–B918. https://doi.org/10.1149/1.2752971

Fabian, T., Posner, J. D., O’Hayre, R., Cha, S. W., Eaton, J. K., Prinz, F. B., & Santiago, J. G. (2006). The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell. JOURNAL OF POWER SOURCES, 161(1), 168–182. https://doi.org/10.1016/j.jpowsour.2006.03.054

Fabian, T., Prinz, F. B., & Brasseur, G. (2005). Capacitive sensor for active tip clearance control in a palm-sized gas turbine generator. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 54(3), 1133–1143. https://doi.org/10.1109/TIM.2005.847233

Fan, Z., An, J. W., Iancu, A., & Prinz, F. B. (2012). Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells. JOURNAL OF POWER SOURCES, 218, 187–191. https://doi.org/10.1016/j.jpowsour.2012.06.103

Fan, Z., Chao, C. C., Hossein-Babaei, F., & Prinz, F. B. (2011). Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. JOURNAL OF MATERIALS CHEMISTRY, 21(29), 10903–10906. https://doi.org/10.1039/c1jm11550b

Fan, Z., & Prinz, F. B. (2011). Enhancing Oxide Ion Incorporation Kinetics by Nanoscale Yttria-Doped Ceria interlayers. NANO LETTERS, 11(6), 2202–2205. https://doi.org/10.1021/nl104417n

FASCHING, M., PRINZ, F. B., & WEISS, L. E. (1995). SMART COATINGS – A TECHNICAL NOTE. JOURNAL OF THERMAL SPRAY TECHNOLOGY, 4(2), 133–136. https://doi.org/10.1007/BF02646101

Fasching, R. J., Bai, S. J., Fabian, T., & Prinz, F. B. (2006). Nanoscale electrochemical probes for single cell analysis. MICROELECTRONIC ENGINEERING, 83(4–9), 1638–1641. https://doi.org/10.1016/j.mee.2006.01.262

Fasching, R. J., Tao, Y., & Prinz, F. B. (2005). Cantilever tip probe arrays for simultaneous SECM and AFM analysis. SENSORS AND ACTUATORS B-CHEMICAL, 108(1–2), 964–972. https://doi.org/10.1016/j.snb.2004.10.058

FINGER, S., FOX, M. S., PRINZ, F. B., & RINDERLE, J. R. (1992). CONCURRENT DESIGN. APPLIED ARTIFICIAL INTELLIGENCE, 6(3), 257–283. https://doi.org/10.1080/08839519208949955

GADH, R., & PRINZ, F. B. (1992). RECOGNITION OF GEOMETRIC FORMS USING THE DIFFERENTIAL DEPTH FILTER. COMPUTER-AIDED DESIGN, 24(11), 583–598. https://doi.org/10.1016/0010-4485(92)90070-Q

GADH, R., & PRINZ, F. B. (1995a). A COMPUTATIONALLY EFFICIENT APPROACH TO FEATURE ABSTRACTION IN DESIGN-MANUFACTURING INTEGRATION. JOURNAL OF ENGINEERING FOR INDUSTRY-TRANSACTIONS OF THE ASME, 117(1), 16–27. https://doi.org/10.1115/1.2803272

GADH, R., & PRINZ, F. B. (1995b). AUTOMATIC-DETERMINATION OF FEATURE INTERACTIONS IN DESIGN-FOR-MANUFACTURING ANALYSIS. JOURNAL OF MECHANICAL DESIGN, 117(1), 2–9. https://doi.org/10.1115/1.2826113

Golnas, T., & Prinz, F. B. (1998). Thin film thermo-mechanical sensors embedded in metallic structures. In H. Hoffmann (Ed.), TRENDS AND NEW APPLICATIONS OF THIN FILMS (Vols. 287–2, Issues 6th International Symposium on Trends and New Applications of Thin Films (TATF 98), pp. 201–204). https://doi.org/10.4028/www.scientific.net/MSF.287-288.201

GUNNARSSON, K. T., & PRINZ, F. B. (1987). CAD MODEL-BASED LOCALIZATION OF PARTS IN MANUFACTURING. COMPUTER, 20(8), 66–74.

Gür, T. M., Bent, S. F., & Prinz, F. B. (2014). Nanostructuring Materials for Solar-to-Hydrogen Conversion. JOURNAL OF PHYSICAL CHEMISTRY C, 118(37), 21301–21315. https://doi.org/10.1021/jp500966u

GURSOZ, E. L., CHOI, Y., & PRINZ, F. B. (1991). BOOLEAN SET OPERATIONS ON NON-MANIFOLD BOUNDARY REPRESENTATION OBJECTS. COMPUTER-AIDED DESIGN, 23(1), 33–39. https://doi.org/10.1016/0010-4485(91)90097-G

GURUMOORTHY, B., KIRCHNER, H. O. K., PRINZ, F. B., & SINCLAIR, G. B. (1988). THICKNESS EFFECTS MAY NOT DO WHAT YOU THINK THEY DO. ENGINEERING FRACTURE MECHANICS, 29(6), 637–640. https://doi.org/10.1016/0013-7944(88)90165-8

GURUMOORTHY, B., KROMP, K., PRINZ, F. B., & BORNHAUSER, A. C. (1987). LIFETIME PREDICTIONS FOR A CERAMIC CUTTING-TOOL MATERIAL AT HIGH-TEMPERATURES. JOURNAL OF MATERIALS SCIENCE, 22(6), 2051–2057. https://doi.org/10.1007/BF01132938

Hammerick, K. E., Huang, Z. B., Sun, N., Lam, M. T., Prinz, F. B., Wu, J. C., Commons, G. W., & Longaker, M. T. (2011). Elastic Properties of Induced Pluripotent Stem Cells. TISSUE ENGINEERING PART A, 17(3–4), 495–502. https://doi.org/10.1089/ten.tea.2010.0211

Hammerick, K. E., James, A. W., Huang, Z. B., Prinz, F. B., & Longaker, M. T. (2010). Pulsed Direct Current Electric Fields Enhance Osteogenesis in Adipose-Derived Stromal Cells. TISSUE ENGINEERING PART A, 16(3), 917–931. https://doi.org/10.1089/ten.tea.2009.0267

Hammerick, K. E., Longaker, M. T., & Prinz, F. B. (2010). In vitro effects of direct current electric fields on adipose-derived stromal cells. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 397(1), 12–17. https://doi.org/10.1016/j.bbrc.2010.05.003

Hellstern, T. R., Nielander, A. C., Chakthranont, P., King, L. A., Willis, J. J., Xu, S. C., MacIsaac, C., Hahn, C., Bent, S. F., Prinz, F. B., & Jaramillo, T. F. (2019). Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes. ACS APPLIED NANO MATERIALS, 2(1), 6–11. https://doi.org/10.1021/acsanm.8b01966

HEMMERLE, J. S., TERK, M., GURSOZ, E. L., PRINZ, F. B., & DOYLE, T. E. (1992). NEXT GENERATION MANUFACTURING TASK PLANNER FOR ROBOTIC ARC-WELDING. ISA TRANSACTIONS, 31(2), 97–113. https://doi.org/10.1016/0019-0578(92)90032-E

Holme, T. P., Huang, H., & Prinz, F. B. (2010). Design of Heterogeneous Catalysts and the Application to the Oxygen Reduction Reaction. In S. Ramanathan (Ed.), THIN FILM METAL-OXIDES: FUNDAMENTALS AND APPLICATIONS IN ELECTRONICS AND ENERGY. https://doi.org/10.1007/978-1-4419-0664-9_10

Holme, T. P., Lee, C., & Prinz, F. B. (2008). Atomic layer deposition of LSM cathodes for solid oxide fuel cells. SOLID STATE IONICS, 179(27–32), 1540–1544. https://doi.org/10.1016/j.ssi.2007.12.100

Holme, T. P., Pornprasertsuk, R., & Prinz, F. B. (2010). Interpretation of Low Temperature Solid Oxide Fuel Cell Electrochemical Impedance Spectra. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(1), B64–B70. https://doi.org/10.1149/1.3251291

Holme, T. P., & Prinz, F. B. (2007). Atomic layer deposition and chemical vapor deposition precursor selection method application to strontium and barium precursors. JOURNAL OF PHYSICAL CHEMISTRY A, 111(33), 8147–8151. https://doi.org/10.1021/jp062568l

Holme, T. P., & Prinz, F. B. (2011). Nonprecious Metal Catalysts for Low Temperature Solid Oxide Fuel Cells. JOURNAL OF PHYSICAL CHEMISTRY C, 115(23), 11641–11648. https://doi.org/10.1021/jp2022538

Hong, S., Bae, J., Koo, B., Chang, I., Cho, G. Y., Kim, Y. B., Cha, S. W., & Prinz, F. B. (2014). Nanostructuring Methods for Enhancing Light Absorption Rate of Si-Based Photovoltaic Devices: A Review. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 1(1), 67–74. https://doi.org/10.1007/s40684-014-0011-6

Hong, S., Lim, Y., Prinz, F. B., & Kim, Y. B. (2018). Thermally stable current-collecting silver grid coated with ceramic-capping layer for low-temperature solid oxide fuel cells. CERAMICS INTERNATIONAL, 44(18), 22212–22218. https://doi.org/10.1016/j.ceramint.2018.08.340

Hong, S., Son, J., Lim, Y., Yang, H., Prinz, F. B., & Kim, Y. B. (2018). A homogeneous grain-controlled ScSZ functional layer for high performance low-temperature solid oxide fuel cells. JOURNAL OF MATERIALS CHEMISTRY A, 6(34), 16506–16514. https://doi.org/10.1039/c8ta05157g

Hong, S., Yang, H., Lim, Y., Prinz, F. B., & Kim, Y. B. (2019). Grain-Controlled Gadolinia-Doped Ceria (GDC) Functional Layer for Interface Reaction Enhanced Low-Temperature Solid Oxide Fuel Cells. ACS APPLIED MATERIALS & INTERFACES, 11(44), 41338–41346. https://doi.org/10.1021/acsami.9b13999

Huang, H., Holme, T., & Prinz, F. B. (2010). Increased Cathodic Kinetics on Platinum in IT-SOFCs by Inserting Highly Ionic-Conducting Nanocrystalline Materials. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 7(4). https://doi.org/10.1115/1.4000632

Huang, H., Nakamura, M., Su, P. C., Fasching, R., Saito, Y., & Prinz, F. B. (2007). High-performance ultrathin solid oxide fuel cells for low-temperature operation. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 154(1), B20–B24. https://doi.org/10.1149/1.2372592

Huang, H., Shim, J. H., Chao, C. C., Pornprasertsuk, R., Sugawara, M., Gür, T. M., & Prinz, F. B. (2009). Characteristics of Oxygen Reduction on Nanocrystalline YSZ. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 156(3), B392–B396. https://doi.org/10.1149/1.3058597

Iancu, A. T., Logar, M., Park, J., & Prinz, F. B. (2015). Atomic Layer Deposition of Undoped TiO2 Exhibiting p-Type Conductivity. ACS APPLIED MATERIALS & INTERFACES, 7(9), 5134–5140. https://doi.org/10.1021/am5072223

Jang, D. Y., Koo, J., Choi, H. R., Kim, J. W., Jeong, H. J., Prinz, F. B., & Shim, J. H. (2020). Coke-Free Oxidation of Methanol in Solid Oxide Fuel Cells with Heterogeneous Nickel-Palladium Catalysts Prepared by Atomic Layer Deposition. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 8(28), 10529–10535. https://doi.org/10.1021/acssuschemeng.0c03020

Jee, Y., Cho, G. Y., An, J., Kim, H. R., Son, J. W., Lee, J. H., Prinz, F. B., Lee, M. H., & Cha, S. W. (2014). High performance Bi-layered electrolytes via atomic layer deposition for solid oxide fuel cells. JOURNAL OF POWER SOURCES, 253, 114–122. https://doi.org/10.1016/j.jpowsour.2013.12.001

Jeong, H., Kim, J. W., Park, J., An, J., Lee, T., Prinz, F. B., & Shim, J. H. (2016). Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells. ACS APPLIED MATERIALS & INTERFACES, 8(44), 30090–30098. https://doi.org/10.1021/acsami.6b08972

Jiang, X. R., Gür, T. M., Prinz, F. B., & Bent, S. F. (2010a). Atomic Layer Deposition (ALD) Co-Deposited Pt-Ru Binary and Pt Skin Catalysts for Concentrated Methanol Oxidation. CHEMISTRY OF MATERIALS, 22(10), 3024–3032. https://doi.org/10.1021/cm902904u

Jiang, X. R., Gür, T. M., Prinz, F. B., & Bent, S. F. (2010b). Sputtered Pt-Ru Alloys as Catalysts for Highly Concentrated Methanol Oxidation. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(3), B314–B319. https://doi.org/10.1149/1.3273081

Jiang, X. R., Huang, H., Prinz, F. B., & Bent, S. F. (2008). Application of atomic layer deposition of platinum to solid oxide fuel cells. CHEMISTRY OF MATERIALS, 20(12), 3897–3905. https://doi.org/10.1021/cm7033189

Jung, H. J., Dasgupta, N. P., Van Stockum, P. B., Koh, A. L., Sinclair, R., & Prinz, F. B. (2013). Spatial Variation of Available Electronic Excitations within Individual Quantum Dots. NANO LETTERS, 13(2), 716–721. https://doi.org/10.1021/nl304400c

Kang, E. H., Choi, H. R., Park, J. S., Kim, K. H., Kim, D. H., Bae, K., Prinz, F. B., & Shim, J. H. (2020). Protonic ceramic fuel cells with slurry-spin coated BaZr0.2Ce0.6Y0.1Yb0.1O3-δ thin-film electrolytes. JOURNAL OF POWER SOURCES, 465. https://doi.org/10.1016/j.jpowsour.2020.228254

Kang, S., Su, P. C., Park, Y. I., Saito, Y., & Prinz, F. B. (2006). Thin-film solid oxide fuel cells on porous nickel substrates with multistage nanohole array. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 153(3), A554–A559. https://doi.org/10.1149/1.2164769

KHOSLA, P. K., NEUMAN, C. P., & PRINZ, F. B. (1985). AN ALGORITHM FOR SEAM TRACKING APPLICATIONS. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 4(1), 27–41. https://doi.org/10.1177/027836498500400103

Kim, H. J. K., Kaplan, K. E., Schindler, P., Xu, S. C., Winterkorn, M. M., Heinz, D. B., English, T. S., Provine, J., Prinz, F. B., & Kenny, T. W. (2019). Electrical Properties of Ultrathin Platinum Films by Plasma-Enhanced Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES, 11(9), 9594–9599. https://doi.org/10.1021/acsami.8b21054

Kim, J. W., Bae, K., Kim, H. J., Son, J. W., Kim, N., Stenfelt, S., Prinz, F. B., & Shim, J. H. (2018). Three-dimensional thermal stress analysis of the re-oxidized Ni-YSZ anode functional layer in solid oxide fuel cells. JOURNAL OF ALLOYS AND COMPOUNDS, 752, 148–154. https://doi.org/10.1016/j.jallcom.2018.04.176

Kim, N., Hsieh, C. H., Huang, H., Prinz, F. B., & Stebbins, J. F. (2007). High temperature <SUP>17</SUP>O MAS NMR study scandia and yttria stabilized of calcia, magnesia, zirconia. SOLID STATE IONICS, 178(27–28), 1499–1506. https://doi.org/10.1016/j.ssi.2007.09.008

Kim, Y. B., Gür, T. M., Jung, H. J., Kang, S., Sinclair, R., & Prinz, F. B. (2011). Effect of crystallinity on proton conductivity in yttrium-doped barium zirconate thin films. SOLID STATE IONICS, 198(1), 39–46. https://doi.org/10.1016/j.ssi.2011.07.004

Kim, Y. B., Gür, T. M., Kang, S., Jung, H. J., Sinclair, R., & Prinz, F. B. (2011). Crater patterned 3-D proton conducting ceramic fuel cell architecture with ultra thin Y:BaZrO3 electrolyte. ELECTROCHEMISTRY COMMUNICATIONS, 13(5), 403–406. https://doi.org/10.1016/j.elecom.2011.02.004

Kim, Y. B., Holme, T. P., Gür, T. M., & Prinz, F. B. (2011). Surface-Modified Low-Temperature Solid Oxide Fuel Cell. ADVANCED FUNCTIONAL MATERIALS, 21(24), 4684–4690. https://doi.org/10.1002/adfm.201101058

Kim, Y. B., Hsu, C. M., Connor, S. T., Gür, T. M., Cui, Y., & Prinz, F. B. (2010). Nanopore Patterned Pt Array Electrodes for Triple Phase Boundary Study in Low Temperature SOFC. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(9), B1269–B1274. https://doi.org/10.1149/1.3455046

Kim, Y. B., Park, J. S., Gür, T. M., & Prinz, F. B. (2011). Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for LT-SOFC. JOURNAL OF POWER SOURCES, 196(24), 10550–10555. https://doi.org/10.1016/j.jpowsour.2011.08.075

Kim, Y. B., Shim, J. H., Gür, T. M., & Prinz, F. B. (2011). Epitaxial and Polycrystalline Gadolinia-Doped Ceria Cathode Interlayers for Low Temperature Solid Oxide Fuel Cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 158(11), B1453–B1457. https://doi.org/10.1149/2.001112jes

Kim, Y., Kwon, H., Han, H. S., Kim, H. J. K., Kim, B. S. Y., Lee, B. C., Lee, J., Asheghi, M., Prinz, F. B., Goodson, K. E., Lim, J., Sim, U., & Park, W. (2020). Tunable Dielectric and Thermal Properties of Oxide Dielectrics via Substrate Biasing in Plasma-Enhanced Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES, 12(40), 44912–44918. https://doi.org/10.1021/acsami.0c11086

Kim, Y., Provine, J., Waich, S. P., Park, J., Phuthong, W., Dadlani, A. L., Kim, H. J., Schindier, P., Kim, K., & Prinz, F. B. (2016). Plasma-Enhanced Atomic Layer Deposition of SiN-AIN Composites for Ultra Low Wet Etch Rates in Hydrofluoric Acid. ACS APPLIED MATERIALS & INTERFACES, 8(27), 17599–17605. https://doi.org/10.1021/acsami.6b03194

Kim, Y., Schindler, P., Dadlani, A. L., Acharya, S., Provine, J., An, J., & Prinz, F. B. (2016). Plasma-enhanced atomic layer deposition of barium titanate with aluminum incorporation. ACTA MATERIALIA, 117, 153–159. https://doi.org/10.1016/j.actamat.2016.07.018

Kim, Y., Xu, S. C., Park, J., Dadlani, A. L., Vinogradova, O., Krishnamurthy, D., Orazov, M., Lee, D. U., Dull, S., Schindler, P., Han, H. S., Wang, Z. X., Graf, T., Schladt, T. D., Mueller, J. E., Sarangi, R., Davis, R., Viswanathan, V., Jaramillo, T. F., … Prinz, F. B. (2022). Improving intrinsic oxygen reduction activity and stability: Atomic layer deposition preparation of platinum-titanium alloy catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL, 300. https://doi.org/10.1016/j.apcatb.2021.120741

KIRCHNER, H. O. K., GURUMOORTHY, B., & PRINZ, F. B. (1987). A PERTURBATION APPROACH TO ROBOT CALIBRATION. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 6(4), 47–59. https://doi.org/10.1177/027836498700600405

KIRCHNER, H. O. K., KROMP, W. K., PRINZ, F. B., & TRIMMEL, P. (1985). PLASTIC-DEFORMATION UNDER SIMULTANEOUS CYCLIC AND UNIDIRECTIONAL LOADING AT LOW AND ULTRASONIC FREQUENCIES. MATERIALS SCIENCE AND ENGINEERING, 68(2), 197–206. https://doi.org/10.1016/0025-5416(85)90409-4

Komadina, J., Walch, S., Fasching, R., Grossman, A., & Prinz, F. B. (2008). Reversible oxidation of spinach ferredoxin at surface-modified electrodes. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 155(10), B1008–B1012. https://doi.org/10.1149/1.2962768

KUHNE, A. H., CARY, H. B., & PRINZ, F. B. (1987). AN EXPERT SYSTEM FOR ROBOTIC ARC-WELDING. WELDING JOURNAL, 66(11), 21–25.

Langston, M. C., Dasgupta, N. P., Jung, H. J., Logar, M., Huang, Y., Sinclair, R., & Prinz, F. B. (2012). In Situ Cycle-by-Cycle Flash Annealing of Atomic Layer Deposited Materials. JOURNAL OF PHYSICAL CHEMISTRY C, 116(45), 24177–24183. https://doi.org/10.1021/jp308895e

Langston, M. C., Usui, T., & Prinz, F. B. (2012). Mechanical masking of films deposited by atomic layer deposition. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 30(1). https://doi.org/10.1116/1.3669520

Lee, E., Prinz, F. B., & Cai, W. (2010). Kinetic Monte Carlo simulations of oxygen vacancy diffusion in a solid electrolyte: Computing the electrical impedance using the fluctuation-dissipation theorem. ELECTROCHEMISTRY COMMUNICATIONS, 12(2), 223–226. https://doi.org/10.1016/j.elecom.2009.11.031

Lee, E., Prinz, F. B., & Cai, W. (2011). Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. PHYSICAL REVIEW B, 83(5). https://doi.org/10.1103/PhysRevB.83.052301

Lee, E., Prinz, F. B., & Cai, W. (2012). Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 20(6). https://doi.org/10.1088/0965-0393/20/6/065006

Lee, H. B., Prinz, F. B., & Cai, W. (2010). Atomistic simulations of surface segregation of defects in solid oxide electrolytes. ACTA MATERIALIA, 58(6), 2197–2206. https://doi.org/10.1016/j.actamat.2009.12.005

Lee, H. B., Prinz, F. B., & Cai, W. (2013). Atomistic simulations of grain boundary segregation in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria solid oxide electrolytes. ACTA MATERIALIA, 61(10), 3872–3887. https://doi.org/10.1016/j.actamat.2013.03.027

Lee, H., Park, S. B., Oh, M. H., Coo, K., Park, Y. I., Suzuki, S., Nagai, M., & Prinz, F. B. (2010). Modification of Nafion® Using 3-mercaptopropyl Trimethoxysilane. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 56(4), 1215–1222. https://doi.org/10.3938/jkps.56.1215

Lee, J. K., Han, H. S., Chaikasetsin, S., Marron, D. P., Waymouth, R. M., Prinz, F. B., & Zare, R. N. (2020). Condensing water vapor to droplets generates hydrogen peroxide. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 117(49), 30934–30941. https://doi.org/10.1073/pnas.2020158117

Lee, J. K., Walker, K. L., Han, H. S., Kang, J., Prinz, F. B., Waymouth, R. M., Nam, H. G., & Zare, R. N. (2019). Spontaneous generation of hydrogen peroxide from aqueous microdroplets. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 116(39), 19294–19298. https://doi.org/10.1073/pnas.1911883116

Lee, M., Lee, W., & Prinz, F. B. (2006). Geometric artefact suppressed surface potential measurements. NANOTECHNOLOGY, 17(15), 3728–3733. https://doi.org/10.1088/0957-4484/17/15/019

Lee, M., O’Hayre, R., Prinz, F. B., & Gür, T. M. (2004). Electrochemical nanopatterning of Ag on solid-state ionic conductor RbAg4I5 using atomic force microscopy. APPLIED PHYSICS LETTERS, 85(16), 3552–3554. https://doi.org/10.1063/1.1807964

Lee, S. J., Chang-Chien, A., Cha, S. W., O’Hayre, R., Park, Y. I., Saito, Y., & Prinz, F. B. (2002). Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. JOURNAL OF POWER SOURCES, 112(2), 410–418. https://doi.org/10.1016/S0378-7753(02)00393-2

Lee, W., Dasgupta, N. P., Jung, H. J., Lee, J. R., Sinclair, R., & Prinz, F. B. (2010). Scanning tunneling spectroscopy of lead sulfide quantum wells fabricated by atomic layer deposition. NANOTECHNOLOGY, 21(48). https://doi.org/10.1088/0957-4484/21/48/485402

Lee, W., Dasgupta, N. P., Trejo, O., Lee, J. R., Hwang, J., Usui, T., & Prinz, F. B. (2010). Area-Selective Atomic Layer Deposition of Lead Sulfide: Nanoscale Patterning and DFT Simulations. LANGMUIR, 26(9), 6845–6852. https://doi.org/10.1021/la904122e

Lee, W., Jung, H. J., Lee, M. H., Kim, Y. B., Park, J. S., Sinclair, R., & Prinz, F. B. (2012). Oxygen Surface Exchange at Grain Boundaries of Oxide Ion Conductors. ADVANCED FUNCTIONAL MATERIALS, 22(5), 965–971. https://doi.org/10.1002/adfm.201101996

Lee, W., Lee, M. H., O’Hayre, R. P., & Prinz, F. B. (2013). NANOSCALE ELECTROCHEMISTRY IN ENERGY RELATED SYSTEMS USING ATOMIC FORCE MICROSCOPY. In D. A. Bonnell & S. V Kalinin (Eds.), SCANNING PROBE MICROSCOPY FOR ENERGY RESEARCH (Vol. 7). https://doi.org/10.1142/8613

Lee, W., Lee, M., Kim, Y. B., & Prinz, F. B. (2009). Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy. NANOTECHNOLOGY, 20(44). https://doi.org/10.1088/0957-4484/20/44/445706

Lee, W., & Prinz, F. B. (2009). Area-Selective Atomic Layer Deposition Using Self-Assembled Monolayer and Scanning Probe Lithography. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 156(9), G125–G128. https://doi.org/10.1149/1.3158593

Lee, W., & Prinz, F. B. (2014). Localized Charge Transfer Reactions near the Pt-YSZ Interfaces using Kelvin Probe Microscopy. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 1(3), 201–205. https://doi.org/10.1007/s40684-014-0025-0

Lee, W., Prinz, F. B., Chen, X., Nonnenmann, S., Bonnell, D. A., & O’Hayre, R. P. (2012). Nanoscale impedance and complex properties in energy-related systems. MRS BULLETIN, 37(7), 659–667. https://doi.org/10.1557/mrs.2012.145

Li, X. C., Stampfl, J., & Prinz, F. B. (2000). Mechanical and thermal expansion behavior of laser deposited metal matrix composites of Invar and TiC. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 282(1–2), 86–90. https://doi.org/10.1016/S0921-5093(99)00781-9

Liu, H. C., Lee, S., Kang, S., Edwards, C. F., & Prinz, F. B. (2004). RP of Si3N4 burner arrays via assembly mould SDM. RAPID PROTOTYPING JOURNAL, 10(4), 239–246. https://doi.org/10.1108/13552540410551360

Liu, H. C., Tsuru, H., Cooper, A. G., & Prinz, F. B. (2005). Rapid prototyping methods of silicon carbide micro heat exchangers. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 219(7), 525–538. https://doi.org/10.1243/095440505X32463

Logar, M., Xu, S. C., Acharya, S., & Prinz, F. B. (2015). Variation of Energy Density of States in Quantum Dot Arrays due to Interparticle Electronic Coupling. NANO LETTERS, 15(3), 1855–1860. https://doi.org/10.1021/nl5046507

Mack, J. F., Van Stockum, P. B., Iwadate, H., & Prinz, F. B. (2011). A combined scanning tunneling microscope-atomic layer deposition tool. REVIEW OF SCIENTIFIC INSTRUMENTS, 82(12). https://doi.org/10.1063/1.3669774

Mack, J. F., Van Stockum, P. B., Yemane, Y. T., Logar, M., Iwadate, H., & Prinz, F. B. (2012). Observing the Nucleation Phase of Atomic Layer Deposition In Situ. CHEMISTRY OF MATERIALS, 24(22), 4357–4362. https://doi.org/10.1021/cm302398v

Motoyama, M., Chao, C. C., An, J. H., Jung, H. J., Gür, T. M., & Prinz, F. B. (2014). Nanotubular Array Solid Oxide Fuel Cell. ACS NANO, 8(1), 340–351. https://doi.org/10.1021/nn4042305

Motoyama, M., Dasgupta, N. P., & Prinz, F. B. (2009). Electrochemical Deposition of Metallic Nanowires as a Scanning Probe Tip. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 156(10), D431–D438. https://doi.org/10.1149/1.3187215

Motoyama, M., Fukunaka, Y., Ogata, Y. H., & Prinz, F. B. (2010). Impact of Accompanying Hydrogen Generation on Metal Nanotube Electrodeposition. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(6), D357–D369. https://doi.org/10.1149/1.3365038

Motoyama, M., & Prinz, F. B. (2014). Electrodeposition and Behavior of Single Metal Nanowire Probes. ACS NANO, 8(4), 3556–3566. https://doi.org/10.1021/nn4066582

Nickel, A. H., Barnett, D. M., & Prinz, F. B. (2001). Thermal stresses and deposition patterns in layered manufacturing. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 317(1–2), 59–64. https://doi.org/10.1016/S0921-5093(01)01179-0

Nie, S. M., Hashimoto, T., & Prinz, F. B. (2022). Magnetic Weyl Semimetal in K2Mn3(AsO4)3 with the Minimum Number of Weyl Points. PHYSICAL REVIEW LETTERS, 128(17). https://doi.org/10.1103/PhysRevLett.128.176401

Nie, S. M., Sun, Y., Prinz, F. B., Wang, Z. J., Weng, H. M., Fang, Z., & Dai, X. (2020). Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6. PHYSICAL REVIEW LETTERS, 124(7). https://doi.org/10.1103/PhysRevLett.124.076403

Nie, S. M., Xing, L. Y., Jin, R. Y., Xie, W. W., Wang, Z. J., & Prinz, F. B. (2018). Topological phases in the TaSe3 compound. PHYSICAL REVIEW B, 98(12). https://doi.org/10.1103/PhysRevB.98.125143

Nie, S. M., Xu, G., Prinz, F. B., & Zhang, S. C. (2017). Topological semimetal in honeycomb lattice LnSI. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 114(40), 10596–10600. https://doi.org/10.1073/pnas.1713261114

Nie, S., Weng, H. M., & Prinz, F. B. (2019). Topological nodal-line semimetals in ferromagnetic rare-earth-metal monohalides. PHYSICAL REVIEW B, 99(3). https://doi.org/10.1103/PhysRevB.99.035125

O’Hayre, R., Barnett, D. M., & Prinz, F. B. (2005). The triple phase boundary – A mathematical model and experimental investigations for fuel cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 152(2), A439–A444. https://doi.org/10.1149/1.1851054

O’Hayre, R., Braithwaite, D., Hermann, W., Lee, S. J., Fabian, T., Cha, S. W., Saito, Y., & Prinz, F. B. (2003). Development of portable fuel cell arrays with printed-circuit technology. JOURNAL OF POWER SOURCES, 124(2), 459–472. https://doi.org/10.1016/S0378-7753(03)00802-4

O’Hayre, R., Fabian, T., Lee, S. J., & Prinz, F. B. (2003). Lateral ionic conduction in planar array fuel cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 150(4), A430–A438. https://doi.org/10.1149/1.1554912

O’Hayre, R., Fabian, T., Litster, S., Prinz, F. B., & Santiago, J. G. (2007). Engineering model of a passive planar air breathing fuel cell cathode. JOURNAL OF POWER SOURCES, 167(1), 118–129. https://doi.org/10.1016/j.jpowsour.2007.01.073

O’Hayre, R., Feng, G., Nix, W. D., & Prinz, F. B. (2004). Quantitative impedance measurement using atomic force microscopy. JOURNAL OF APPLIED PHYSICS, 96(6), 3540–3549. https://doi.org/10.1063/1.1778217

O’Hayre, R., Lee, M., & Prinz, F. B. (2004). Ionic and electronic impedance imaging using atomic force microscopy. JOURNAL OF APPLIED PHYSICS, 95(12), 8382–8392. https://doi.org/10.1063/1.1737047

O’Hayre, R., Lee, S. J., Cha, S. W., & Prinz, F. B. (2002). A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. JOURNAL OF POWER SOURCES, 109(2), 483–493. https://doi.org/10.1016/S0378-7753(02)00238-0

O’Hayre, R., & Prinz, F. B. (2004). The Air/Platinum/Nafion triple-phase boundary: Characteristics, scaling, and implications for fuel cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 151(5), A756–A762. https://doi.org/10.1149/1.1701868

Park, J. S., An, J., Lee, M. H., Prinz, F. B., & Lee, W. (2015). Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells. JOURNAL OF POWER SOURCES, 295, 74–78. https://doi.org/10.1016/j.jpowsour.2015.06.149

Park, J. S., Holme, T. P., Shim, J. H., & Prinz, F. B. (2012). Improved oxygen surface exchange kinetics at grain boundaries in nanocrystalline yttria-stabilized zirconia. MRS COMMUNICATIONS, 2(3), 107–111. https://doi.org/10.1557/mrc.2012.18

Park, J. S., Kim, Y. B., An, J., & Prinz, F. B. (2012). Oxygen diffusion across the grain boundary in bicrystal yttria stabilized zirconia. SOLID STATE COMMUNICATIONS, 152(24), 2169–2171. https://doi.org/10.1016/j.ssc.2012.09.019

Park, J. S., Kim, Y. B., An, J., Shim, J. H., Gür, T. M., & Prinz, F. B. (2013). Effect of cation non-stoichiometry and crystallinity on the ionic conductivity of atomic layer deposited Y:BaZrO3 films. THIN SOLID FILMS, 539, 166–169. https://doi.org/10.1016/j.tsf.2013.05.092

Park, J. S., Kim, Y. B., Shim, J. H., Kang, S., Gür, T. M., & Prinz, F. B. (2010). Evidence of Proton Transport in Atomic Layer Deposited Yttria-Stabilized Zirconia Films. CHEMISTRY OF MATERIALS, 22(18), 5366–5370. https://doi.org/10.1021/cm1017536

Park, J. S., Seo, B. G., Koo, J., Lim, J. H., Lee, Y. S., Han, G. D., Prinz, F. B., & Shim, J. H. (2023). High-Performance Hydroxide Exchange Membrane Fuel Cell Comprising an Atomic Layer-Deposited Silver Cathode. NANO LETTERS, 23(17), 7825–7830. https://doi.org/10.1021/acs.nanolett.3c01347

Park, S. W., Han, G. D., Choi, H. J., Prinz, F. B., & Shim, J. H. (2018). Evaluation of atomic layer deposited alumina as a protective layer for domestic silver articles: Anti-corrosion test in artificial sweat. APPLIED SURFACE SCIENCE, 441, 718–723. https://doi.org/10.1016/j.apsusc.2018.02.090

Park, Y. I., Cha, S. W., Saito, Y., & Prinz, F. B. (2005). Gas-tight alumina films on nanoporous substrates through oxidation of sputtered metal films. THIN SOLID FILMS, 476(1), 168–173. https://doi.org/10.1016/j.tsf.2004.09.059

Park, Y. I., Su, P. C., Cha, S. W., Saito, Y., & Prinz, F. B. (2006). Thin-film SOFCs using gastight YSZ thin films on nanoporous substrates. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 153(2), A431–A436. https://doi.org/10.1149/1.2147318

Petousis, I., Chen, W., Hautier, G., Graf, T., Schladt, T. D., Persson, K. A., & Prinz, F. B. (2016). Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index. PHYSICAL REVIEW B, 93(11). https://doi.org/10.1103/PhysRevB.93.115151

Petousis, I., Mrdjenovich, D., Ballouz, E., Liu, M., Winston, D., Chen, W., Graf, T., Schladt, T. D., Persson, K. A., & Prinz, F. B. (2017). High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. SCIENTIFIC DATA, 4. https://doi.org/10.1038/sdata.2016.134

Phuthong, W., Huang, Z. B., Wittkopp, T. M., Sznee, K., Heinnickel, M. L., Dekker, J. P., Frese, R. N., Prinz, F. B., & Grossman, A. R. (2015). The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes. PLANT PHYSIOLOGY, 169(2), 1318–1332. https://doi.org/10.1104/pp.15.00706

Pinilla, J. M., & Prinz, F. B. (2003). Lead-time reduction through flexible routing: application to Shape Deposition Manufacturing. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 41(13), 2957–2973. https://doi.org/10.1080/0020754021000032040

Pornprasertsuk, R., Cheng, J., Huang, H., & Prinz, F. B. (2007). Electrochemical impedance analysis of solid oxide fuel cell electrolyte using kinetic Monte Carlo technique. SOLID STATE IONICS, 178(3–4), 195–205. https://doi.org/10.1016/j.ssi.2006.12.016

Pornprasertsuk, R., Holme, T., & Prinz, F. B. (2009). Kinetic Monte Carlo Simulations of Solid Oxide Fuel Cell. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 156(12), B1406–B1416. https://doi.org/10.1149/1.3232209

Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C. B., & Prinz, F. B. (2005). Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. JOURNAL OF APPLIED PHYSICS, 98(10). https://doi.org/10.1063/1.2135889

PRINZ, F. B., & ARGON, A. S. (1983). A KINETIC DISLOCATION MODEL FOR THE PLASTIC BEHAVIOR AT HIGH STRAINS. JOURNAL OF METALS, 35(8), A40–A40.

PRINZ, F. B., & ARGON, A. S. (1984). THE EVOLUTION OF PLASTIC RESISTANCE IN LARGE STRAIN PLASTIC-FLOW OF SINGLE-PHASE SUBGRAIN FORMING METALS. ACTA METALLURGICA, 32(7), 1021–1028. https://doi.org/10.1016/0001-6160(84)90004-X

Prinz, F. B., Golnas, A., & Nickel, A. (2000). Does integrated-circuit fabrication show the path for the future of mechanical manufacturing? MRS BULLETIN, 25(10), 32–35. https://doi.org/10.1557/mrs2000.201

Prinz, F. B., Min, S., & An, J. (2023). Preface for NetZero, Achievable by Manufacturing? INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 10(3), 635–636. https://doi.org/10.1007/s40684-023-00510-x

Provine, J., Schindler, P., Kim, Y., Walch, S. P., Kim, H. J., Kim, K. H., & Prinz, F. B. (2016). Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride. AIP ADVANCES, 6(6). https://doi.org/10.1063/1.4954238

Provine, J., Schindler, P., Torgersen, J., Kim, H. J., Karnthaler, H. P., & Prinz, F. B. (2016). Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 34(1). https://doi.org/10.1116/1.4937991

Quadros, W. R., Gurumoorthy, B., Ramaswami, K., & Prinz, F. B. (2001). Skeletons for representation and reasoning in engineering applications. ENGINEERING WITH COMPUTERS, 17(2), 186–198. https://doi.org/10.1007/PL00007200

Quadros, W. R., Ramaswami, K., Prinz, F. B., & Gurumoorthy, B. (2004). LayTracks: a new approach to automated geometry adaptive quadrilateral mesh generation using medial axis transform. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 61(2), 209–237. https://doi.org/10.1002/nme.1063

ROSATO, A. D., VREELAND, T., & PRINZ, F. B. (1991). MANUFACTURE OF POWDER COMPACTS. INTERNATIONAL MATERIALS REVIEWS, 36(2), 45–61. https://doi.org/10.1179/imr.1991.36.1.45

Rossetti, G., Xu, J. H., Hong, S. W., Casalegno, A., Prinz, F. B., & Di Fonzo, F. (2022). Hierarchical titanium nitride nanostructured thin film gas diffusion electrodes for next generation PEM fuel cells. ELECTROCHIMICA ACTA, 418. https://doi.org/10.1016/j.electacta.2022.140289

Ryu, W., Bai, S. J., Park, J. S., Huang, Z. B., Moseley, J., Fabian, T., Fasching, R. J., Grossman, A. R., & Prinz, F. B. (2010). Direct Extraction of Photosynthetic Electrons from Single Algal Cells by Nanoprobing System. NANO LETTERS, 10(4), 1137–1143. https://doi.org/10.1021/nl903141j

Ryu, W., Fasching, R. J., Vyakarnam, M., Greco, R. S., & Prinz, F. B. (2006). Microfabrication technology of biodegradable polymers for interconnecting microstructures. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 15(6), 1457–1465. https://doi.org/10.1109/JMEMS.2006.883566

Ryu, W. H., Huang, Z. N., Prinz, F. B., Goodman, S. B., & Fasching, R. (2007). Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. JOURNAL OF CONTROLLED RELEASE, 124(1–2), 98–105. https://doi.org/10.1016/j.jconrel.2007.08.024

Ryu, W. H., Vyakarnam, M., Greco, R. S., Prinz, F. B., & Fasching, R. J. (2007). Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. BIOMEDICAL MICRODEVICES, 9(6), 845–853. https://doi.org/10.1007/s10544-007-9097-8

Ryu, W., Hammerick, K. E., Kim, Y. B., Kim, J. B., Fasching, R., & Prinz, F. B. (2011). Three-dimensional biodegradable microscaffolding: Scaffold characterization and cell population at single cell resolution. ACTA BIOMATERIALIA, 7(9), 3325–3335. https://doi.org/10.1016/j.actbio.2011.05.011

Ryu, W., Huang, Z. B., Park, J. S., Moseley, J., Grossman, A. R., Fasching, R. J., & Prinz, F. B. (2008). Open micro-fluidic system for atomic force microscopy-guided in situ electrochemical probing of a single cell. LAB ON A CHIP, 8(9), 1460–1467. https://doi.org/10.1039/b803450h

Ryu, W., Min, S. W., Hammerick, K. E., Vyakarnam, M., Greco, R. S., Prinz, F. B., & Fasching, R. J. (2007). The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. BIOMATERIALS, 28(6), 1174–1184. https://doi.org/10.1016/j.biomaterials.2006.11.002

Schindler, P., Kim, Y., Thian, D., An, J., & Prinz, F. B. (2016). Plasma-enhanced atomic layer deposition of BaTiO3. SCRIPTA MATERIALIA, 111, 106–109. https://doi.org/10.1016/j.scriptamat.2015.08.026

Schindler, P., Logar, M., Provine, J., & Prinz, F. B. (2015). Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition. LANGMUIR, 31(18), 5057–5062. https://doi.org/10.1021/acs.langmuir.5b00216

Seo, Y. H., Kim, L. H., Prinz, F. B., & Ryu, W. (2014). Digitally-patterned nanoprobe arrays for single cell insertion enabled by wet tapping. RSC ADVANCES, 4(32), 16655–16661. https://doi.org/10.1039/c4ra00940a

Sharon, J. A., Su, P. C., Prinz, F. B., & Hemker, K. J. (2011). Stress-driven grain growth in nanocrystalline Pt thin films. SCRIPTA MATERIALIA, 64(1), 25–28. https://doi.org/10.1016/j.scriptamat.2010.08.057

Shen, Y. X., Lee, M., Lee, W., Barnett, D. M., Pinsky, P., & Prinz, F. B. (2008). A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method. NANOTECHNOLOGY, 19(3). https://doi.org/10.1088/0957-4484/19/03/035710

SHERRY, W. M., ERICH, J. S., BARTSCHAT, M. K., & PRINZ, F. B. (1985). THE EFFECT OF JOINT DESIGN ON THE THERMAL FATIGUE LIFE OF LEADLESS CHIP CARRIER SOLDER JOINTS. IEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGY, 8(4), 417–426. https://doi.org/10.1109/TCHMT.1985.1136540

Shim, J. H., Cha, S. W., Gür, T. M., & Prinz, F. B. (2006). Fuel Cells for Intermediate Temperature Operations. JOURNAL OF THE KOREAN CERAMIC SOCIETY, 43(12), 751–757. https://doi.org/10.4191/kcers.2006.43.12.751

Shim, J. H., Chao, C. C., Huang, H., & Prinz, F. B. (2007). Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. CHEMISTRY OF MATERIALS, 19(15), 3850–3854. https://doi.org/10.1021/cm070913t

Shim, J. H., Choi, H. J., Kim, Y., Torgersen, J., An, J., Lee, M. H., & Prinz, F. B. (2017). Process-property relationship in high-k ALD SrTiO3 and BaTiO3: a review. JOURNAL OF MATERIALS CHEMISTRY C, 5(32), 8000–8013. https://doi.org/10.1039/c6tc05158h

Shim, J. H., Gür, T. M., & Prinz, F. B. (2008). Proton conduction in thin film yttrium-doped barium zirconate. APPLIED PHYSICS LETTERS, 92(25). https://doi.org/10.1063/1.2947584

Shim, J. H., Han, G. D., Choi, H. J., Kim, Y., Xu, S. C., An, J., Kim, Y. B., Graf, T., Schladt, T. D., Gür, T. M., & Prinz, F. B. (2019). Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 6(3), 629–646. https://doi.org/10.1007/s40684-019-00092-7

Shim, J. H., Jiang, X., Bent, S. F., & Prinz, F. B. (2010). Catalysts with Pt Surface Coating by Atomic Layer Deposition for Solid Oxide Fuel Cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 157(6), B793–B797. https://doi.org/10.1149/1.3368787

Shim, J. H., Kang, S., Cha, S. W., Lee, W., Kim, Y. B., Park, J. S., Gür, T. M., Prinz, F. B., Chao, C. C., & An, J. W. (2013). Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells. JOURNAL OF MATERIALS CHEMISTRY A, 1(41), 12695–12705. https://doi.org/10.1039/c3ta11399j

Shim, J. H., Kim, Y. B., Park, J. S., An, J., Gür, T. M., & Prinz, F. B. (2012). Patterned Silver Nanomesh Cathode for Low-Temperature Solid Oxide Fuel Cells. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 159(5), B541–B545. https://doi.org/10.1149/2.059205jes

Shim, J. H., Park, J. S., An, J., Gür, T. M., Kang, S., & Prinz, F. B. (2009). Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes. CHEMISTRY OF MATERIALS, 21(14), 3290–3296. https://doi.org/10.1021/cm900820p

Shim, J. H., Park, J. S., Holme, T. P., Crabb, K., Lee, W., Kim, Y. B., Tian, X., Gür, T. M., & Prinz, F. B. (2012). Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor. ACTA MATERIALIA, 60(1), 1–7. https://doi.org/10.1016/j.actamat.2011.09.050

Shim, J., Kang, S., Cha, S. W., Lee, W., Kim, Y. B., Park, J. S., Chao, C. C., An, J., Gür, T. M., & Prinz, F. B. (2013). Atomic layer deposition of thin-film ceramic electrolytes for high-performance fuel cells (vol 1, pg 12695, 2013). JOURNAL OF MATERIALS CHEMISTRY A, 1(48), 15556.

Sowa, M. J., Yemane, Y., Prinz, F. B., & Provine, J. (2016). Plasma-enhanced atomic layer deposition of tungsten nitride. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 34(5). https://doi.org/10.1116/1.4961567

Sowa, M. J., Yemane, Y., Zhang, J. S., Palmstrom, J. C., Ju, L., Strandwitz, N. C., Prinz, F. B., & Provine, J. (2017). Plasma-enhanced atomic layer deposition of superconducting niobium nitride. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 35(1). https://doi.org/10.1116/1.4972858

Stampfl, J., Leitgeb, R., Cheng, Y. L., & Prinz, F. B. (2000). Electro-discharge machining of mesoscopic parts with electroplated copper and hot-pressed silver tungsten electrodes. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 10(1), 1–6. https://doi.org/10.1088/0960-1317/10/1/301

Stampfl, J., Liu, H. C., Nam, S. W., Sakamoto, K., Tsuru, H., Kang, S. Y., Cooper, A. G., Nickel, A., & Prinz, F. B. (2002). Rapid prototyping and manufacturing by gelcasting of metallic and ceramic slurries. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 334(1–2), 187–192. https://doi.org/10.1016/S0921-5093(01)01800-7

Stampfl, J., Schwentenwein, M., Homa, J., & Prinz, F. B. (2023). Lithography-based additive manufacturing of ceramics: Materials, applications and perspectives. MRS COMMUNICATIONS. https://doi.org/10.1557/s43579-023-00444-0

Su, P. C., Chao, C. C., Shim, J. H., Fasching, R., & Prinz, F. B. (2008). Solid oxide fuel cell with corrugated thin film electrolyte. NANO LETTERS, 8(8), 2289–2292. https://doi.org/10.1021/nl800977z

Su, P. C., & Prinz, F. B. (2011). Cup-shaped yttria-doped barium zirconate membrane fuel cell array. MICROELECTRONIC ENGINEERING, 88(8), 2405–2407. https://doi.org/10.1016/j.mee.2010.12.006

Su, P. C., & Prinz, F. B. (2012). Nanoscale membrane electrolyte array for solid oxide fuel cells. ELECTROCHEMISTRY COMMUNICATIONS, 16(1), 77–79. https://doi.org/10.1016/j.elecom.2011.12.002

Thian, D., Yemane, Y. T., Logar, M., Xu, S. C., Schindler, P., Winterkorn, M. M., Provine, J., & Prinz, F. B. (2016). Atomically Flat Silicon Oxide Monolayer Generated by Remote Plasma. JOURNAL OF PHYSICAL CHEMISTRY C, 120(15), 8148–8156. https://doi.org/10.1021/acs.jpcc.6b00768

Thian, D., Yemane, Y. T., Xu, S. C., & Prinz, F. B. (2017). Methodology for Studying Surface Chemistry and Evolution during the Nucleation Phase of Atomic Layer Deposition Using Scanning Tunneling Microscopy. JOURNAL OF PHYSICAL CHEMISTRY C, 121(49), 27379–27388. https://doi.org/10.1021/acs.jpcc.7b06491

Torgersen, J., Acharya, S., Dadlani, A. L., Petousis, I., Kim, Y., Trejo, O., Nordlund, D., & Prinz, F. B. (2016). Relating Electronic and Geometric Structure of Atomic Layer Deposited BaTiO3 to its Electrical Properties. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 7(8), 1428–1433. https://doi.org/10.1021/acs.jpclett.6b00393

Trejo, O., Dadlani, A. L., De La Paz, F., Acharya, S., Kravec, R., Nordlund, D., Sarangi, R., Prinz, F. B., Torgersen, J., & Dasgupta, N. P. (2019). Elucidating the Evolving Atomic Structure in Atomic Layer Deposition Reactions with in Situ XANES and Machine Learning. CHEMISTRY OF MATERIALS, 31(21), 8937–8947. https://doi.org/10.1021/acs.chemmater.9b03025

Trejo, O., Roelofs, K. E., Xu, S. C., Logar, M., Sarangi, R., Nordlund, D., Dadlani, A. L., Kravec, R., Dasgupta, N. P., Bent, S. F., & Prinz, F. B. (2015). Quantifying Geometric Strain at the PbS QD-TiO2 Anode Interface and Its Effect on Electronic Structures. NANO LETTERS, 15(12), 7829–7836. https://doi.org/10.1021/acs.nanolett.5b02373

Usui, T., Donnelly, C. A., Logar, M., Sinclair, R., Schoonman, J., & Prinz, F. B. (2013). Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition. ACTA MATERIALIA, 61(20), 7660–7670. https://doi.org/10.1016/j.actamat.2013.09.003

Usui, T., Mollinger, S. A., Iancu, A. T., Reis, R. M., & Prinz, F. B. (2012). High aspect ratio and high breakdown strength metal-oxide capacitors. APPLIED PHYSICS LETTERS, 101(3). https://doi.org/10.1063/1.4737641

Walch, S. P., Komadina, J. D., & Prinz, F. B. (2007a). COMP 73-Conversion of a plant chloroplast to a biological fuel cell: 1. Comparison of electron transfer from reduced ferredoxin to FAD and a gold electrode. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 234.

Walch, S. P., Komadina, J. D., & Prinz, F. B. (2007b). FUEL 192-Conversion of a plant chloroplast to a biological fuel cell. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 234.

Walch, S. P., Komadina, J. D., & Prinz, F. B. (2009). A Computational Comparison of Electron Transfer from Reduced Ferredoxin to Flavin Adenine Dinucleotide and a Gold Electrode. JOURNAL OF PHYSICAL CHEMISTRY B, 113(20), 7298–7307. https://doi.org/10.1021/jp8051104

Wang, H. T., Lu, Z. Y., Xu, S. C., Kong, D. S., Cha, J. J., Zheng, G. Y., Hsu, P. C., Yan, K., Bradshaw, D., Prinz, F. B., & Cui, Y. (2013). Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 110(49), 19701–19706. https://doi.org/10.1073/pnas.1316792110

Wang, H. T., Xu, S. C., Tsai, C., Li, Y. Z., Liu, C., Zhao, J., Liu, Y. Y., Yuan, H. Y., Abild-Pedersen, F., Prinz, F. B., Norskov, J. K., & Cui, Y. (2016). Direct and continuous strain control of catalysts with tunable battery electrode materials. SCIENCE, 354(6315), 1031–1036. https://doi.org/10.1126/science.aaf7680

Wang, X. H., Huang, H., Holme, T., Tian, X., & Prinz, F. B. (2008). Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. JOURNAL OF POWER SOURCES, 175(1), 75–81. https://doi.org/10.1016/j.jpowsour.2007.09.066

Weiss, L. E., Merz, R., Prinz, F. B., Neplotnik, G., Padmanabhan, P., Schultz, L., & Ramaswami, K. (1997). Shape deposition manufacturing of heterogeneous structures. JOURNAL OF MANUFACTURING SYSTEMS, 16(4), 239–248. https://doi.org/10.1016/S0278-6125(97)89095-4

Xu, S. C., Dadlani, A. L., Acharya, S., Schindler, P., & Prinz, F. B. (2016). Oscillatory barrier-assisted Langmuir-Blodgett deposition of large-scale quantum dot monolayers. APPLIED SURFACE SCIENCE, 367, 500–506. https://doi.org/10.1016/j.apsusc.2016.01.243

Xu, S. C., Kim, Y., Higgins, D., Yusuf, M., Jaramillo, T. F., & Prinz, F. B. (2017). Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts. ELECTROCHIMICA ACTA, 255, 99–108. https://doi.org/10.1016/j.electacta.2017.09.145

Xu, S. C., Kim, Y. M., Park, J., Higgins, D., Shen, S. J., Schindler, P., Thian, D., Provine, J., Torgersen, J., Graf, T., Schladt, T. D., Orazov, M., Liu, B. H., Jaramillo, T. F., & Prinz, F. B. (2018). Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. NATURE CATALYSIS, 1(8), 624–630. https://doi.org/10.1038/s41929-018-0118-1

Xu, S. C., Thian, D., Wang, S. K., Wang, Y. M., & Prinz, F. B. (2014). Effects of size polydispersity on electron mobility in a two-dimensional quantum-dot superlattice. PHYSICAL REVIEW B, 90(14). https://doi.org/10.1103/PhysRevB.90.144202

Xu, S. C., Wang, Z. X., Dull, S., Liu, Y. Z., Lee, D. U., Pacheco, J. S. L., Orazov, M., Vullum, P. E., Dadlani, A. L., Vinogradova, O., Schindler, P., Tam, Q., Schladt, T. D., Mueller, J. E., Kirsch, S., Huebner, G., Higgins, D., Torgersen, J., Viswanathan, V., … Prinz, F. B. (2021). Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition. ADVANCED MATERIALS, 33(30). https://doi.org/10.1002/adma.202007885

Yemane, Y. T., Sowa, M. J., Zhang, J., Ju, L., Deguns, E. W., Strandwitz, N. C., Prinz, F. B., & Provine, J. (2017). Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 30(9). https://doi.org/10.1088/1361-6668/aa7ce3